Effects of membrane potential and sphingolipid structures on fusion of Semliki Forest virus.
نویسندگان
چکیده
Cells expressing the E1 and E2 envelope proteins of Semliki Forest virus (SFV) were fused to voltage-clamped planar lipid bilayer membranes at low pH. Formation and evolution of fusion pores were electrically monitored by capacitance measurements, and membrane continuity was tracked by video fluorescence microscopy by including rhodamine-phosphatidylethanolamine in the bilayer. Fusion occurred without leakage for a negative potential applied to the trans side of the planar membrane. When a positive potential was applied, leakage was severe, obscuring the observation of any fusion. E1-mediated cell-cell fusion occurred without leakage for negative intracellular potentials but with substantial leakage for zero membrane potential. Thus, negative membrane potentials are generally required for nonleaky fusion. With planar bilayers as the target, the first fusion pore that formed almost always enlarged; pore flickering was a rare event. Similar to other target membranes, fusion required cholesterol and sphingolipids in the planar membrane. Sphingosine did not support fusion, but both ceramide, with even a minimal acyl chain (C(2)-ceramide), and lysosphingomyelin (lyso-SM) promoted fusion with the same kinetics. Thus, unrelated modifications to different parts of sphingosine yielded sphingolipids that supported fusion to the same degree. Fusion studies of pyrene-labeled SFV with cholesterol-containing liposomes showed that C(2)-ceramide supported fusion while lyso-SM did not, apparently due to its positive curvature effects. A model is proposed in which the hydroxyls of C-1 and C-3 as well as N of C-2 of the sphingosine backbone must orient so as to form multiple hydrogen bonds to amino acids of SFV E1 for fusion to proceed.
منابع مشابه
Novel mutations that control the sphingolipid and cholesterol dependence of the Semliki Forest virus fusion protein.
The enveloped alphavirus Semliki Forest virus (SFV) infects cells via a membrane fusion reaction mediated by the E1 membrane protein. Efficient SFV-membrane fusion requires the presence of cholesterol and sphingolipid in the target membrane. Here we report on two mutants, srf-4 and srf-5, selected for growth in cholesterol-depleted cells. Like the previously isolated srf-3 mutant (E1 proline 22...
متن کاملBiochemical consequences of a mutation that controls the cholesterol dependence of Semliki Forest virus fusion.
The enveloped alphavirus Semliki Forest virus (SFV) infects cells via a low-pH-triggered membrane fusion reaction that requires cholesterol and sphingolipid in the target membrane. Cholesterol-depleted insect cells are highly resistant to alphavirus infection and were used to select srf-3, an SFV mutant that is approximately 100-fold less cholesterol dependent for infection due to a single amin...
متن کاملMembrane fusion process of Semliki Forest virus. I: Low pH-induced rearrangement in spike protein quaternary structure precedes virus penetration into cells
The Semliki Forest virus (SFV) directs the synthesis of a heterodimeric membrane protein complex which is used for virus membrane assembly during budding at the surface of the infected cell, as well as for low pH-induced membrane fusion in the endosomes when particles enter new host cells. Existing evidence suggests that the E1 protein subunit carries the fusion potential of the heterodimer, wh...
متن کاملEffects of monovalent cations on Semliki Forest virus entry into BHK-21 cells.
Infection of mammalian cells with Semliki Forest virus requires the endocytosis of the virus, its delivery to prelysosomal endosomes, and fusion of the viral envelope with the endosome membrane. Previous studies have indicated that the low endosomal pH triggers a conformational change in the viral spike glycoproteins rendering them fusogenic. In this paper, we demonstrate an additional factor(s...
متن کاملFusion induced by a class II viral fusion protein, semliki forest virus E1, is dependent on the voltage of the target cell.
Cells expressing the low pH-triggered class II viral fusion protein E1 of Semliki Forest virus (SFV) were fused to target cells. Fusion was monitored by electrical capacitance and aqueous dye measurements. Electrical voltage-clamp measurements showed that SFV E1-induced cell-cell fusion occurred quickly after acidification for a trans-negative potential across the target membrane (i.e., negativ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 76 24 شماره
صفحات -
تاریخ انتشار 2002